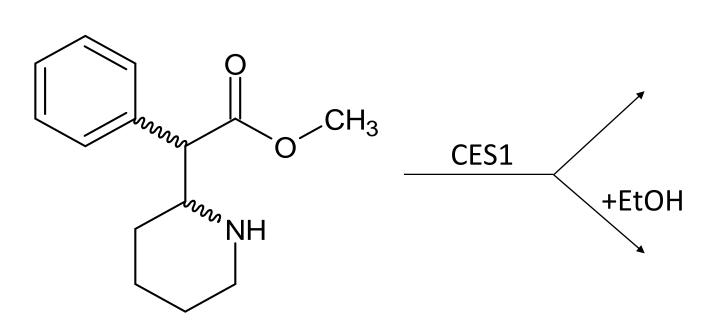
Chiral Separation and Quantitation of Methylphenidate, Ethylphenidate, and Ritalinic Acid Using Supercritical Fluid Chromatography

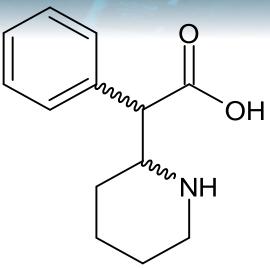
Christina Smith, BS*; Svante Vikingsson, PhD; Robert Kronstrand, PhD; Madeleine Gates, PhD

Disclosure

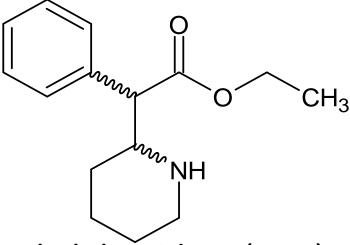
• The authors have nothing to disclose.

Attention-deficit/hyperactivity disorder (ADHD)

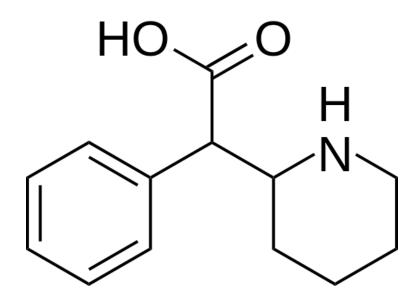

- Neurobehavioral disorder
 - Boredom, difficulty hearing and listening
- Lack of focus
 - Due to: inattention, hyperactivity, impulsivity


Methylphenidate (MPH)

- Most commonly prescribed ADHD medication
- Speeds up brain activity
- 1990s psychostimulant use, recreational abuse
- Schedule II medical use, high potential for abuse

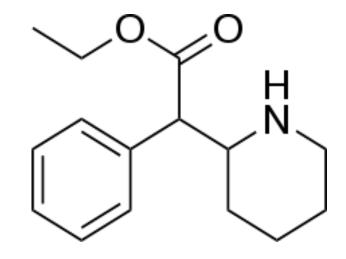

MPH Metabolism

Methylphenidate (MPH)


Ritalinic Acid (RA)

Ethylphenidate (EPH)

Ritalinic Acid


- Inactive metabolite of MPH
- Structurally different from MPH
 - Carboxylic acid group
 - Poses a challenge for analytical extraction

Ethylphenidate

- MPH and alcohol co-abuse
 - Reported in 92% of cases
- Case studies: 2 fatal overdoses

- More recently: abused alone
 - Purchased over internet

[-] Borsbakenare 4 points 8 months ago

I have used ethylphenidate multiple times to study.

It works like a charm for long hours behind the desk. I got really motivated to get shit done and enjoyed the process of studying.

Compared to methylphenidate it's more euphoric IME.

I stopped using this chemical due to the harsh comedowns, i really hate that

After studying, you feel completely empty and the next day i could feel my heart ache sometimes.

Purpose of this study

 To optimize and validate a method for the chiral separation and quantitation of the I/d enantiomers of threo-MPH, EPH and RA in postmortem blood using supercritical fluid chromatography coupled with mass spectrometry

Supercritical Fluid Chromatography

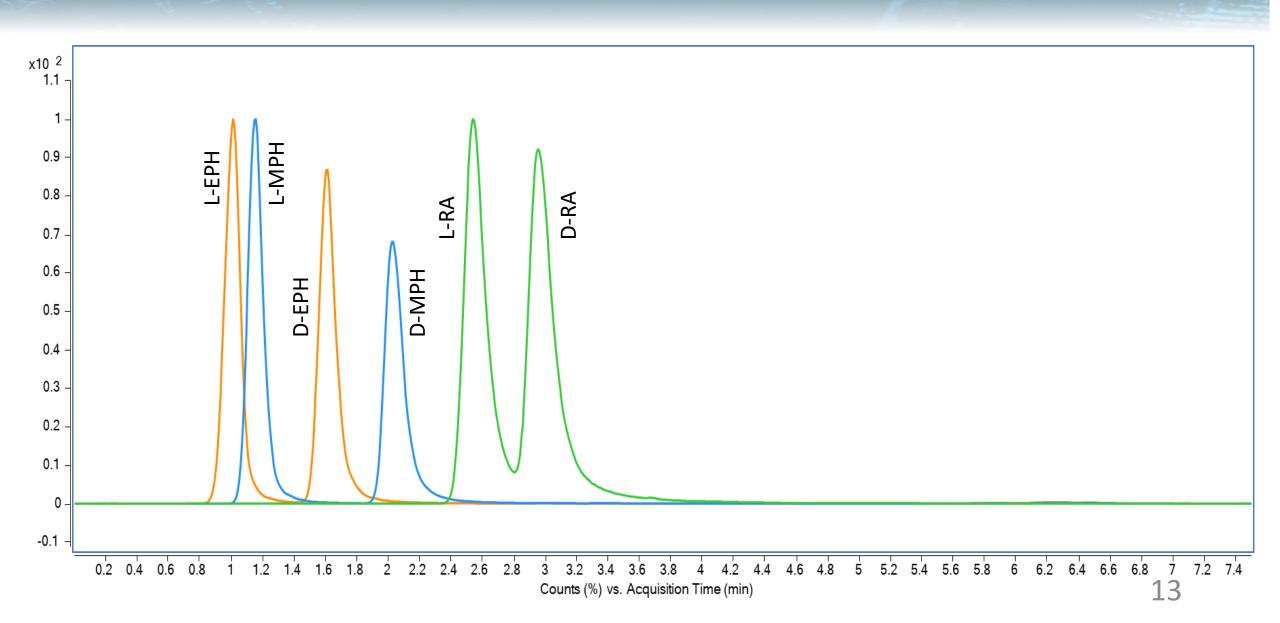
- Supercritical fluid substance maintained above its critical temperature and pressure
 - Exhibition of chemical properties between liquid and gas
- The "in-between" of GC and LC
- CO₂ is used as the mobile phase
- Analysis of low-moderate molecular weight, temperature labile, separation of chiral compounds

Objective

- To develop and optimize a method to extract MPH, EPH and RA from postmortem blood
- To develop and validate a quantitative method for these analytes utilizing a chiral separation method on SFC-MS
- To compare the quantitation values to those acquired by an achiral LC-MS method

Extraction

• 250 uL of blood • 25 uL of internal standards and drugs • 100 mM phosphate buffer (1 mL) Add Vortex • Let stand for 5 minutes Wait • 2000 rpm, 10 minutes Centrifuge • 1mL Methanol (1 mL) Condition • 100mM phosphate buffer (1 mL) Condition


• Sample to column – Agilent bond elut (130 mg) Apply • 100mM acetic acid (1 mL) Wash • MeOH (1 mL) Wash • With pressure, 10min Dry • 2% NH4OH in MeOH (2 mL) Elute Evaporate to dryness under nitrogen Dry • Mobile phase (0.2% TFA in Methanol) (100 uL)

Recon

Instrumentation

Agilent Technologies 1260 Infinity SFC Control/1260 Infinity LC		
Column	Agilent Poroshell Chiral-V	
	(2.1 x 100mm x 2.7 μm)	
Mobile Phase	obile Phase 0.2% trifluoroacetic acid in supercritical C	
Flow Rate	1.8mL/min	
	Agilent Technologies Ultivo QQQ MS	
Isocratic Pump	ocratic Pump 0.1% formic acid in MeOH:diH2O (85:15)	
Acquisition Mode	MRM	
Injection Volume	3μL	

EIC

Method Validation – Results (blood)

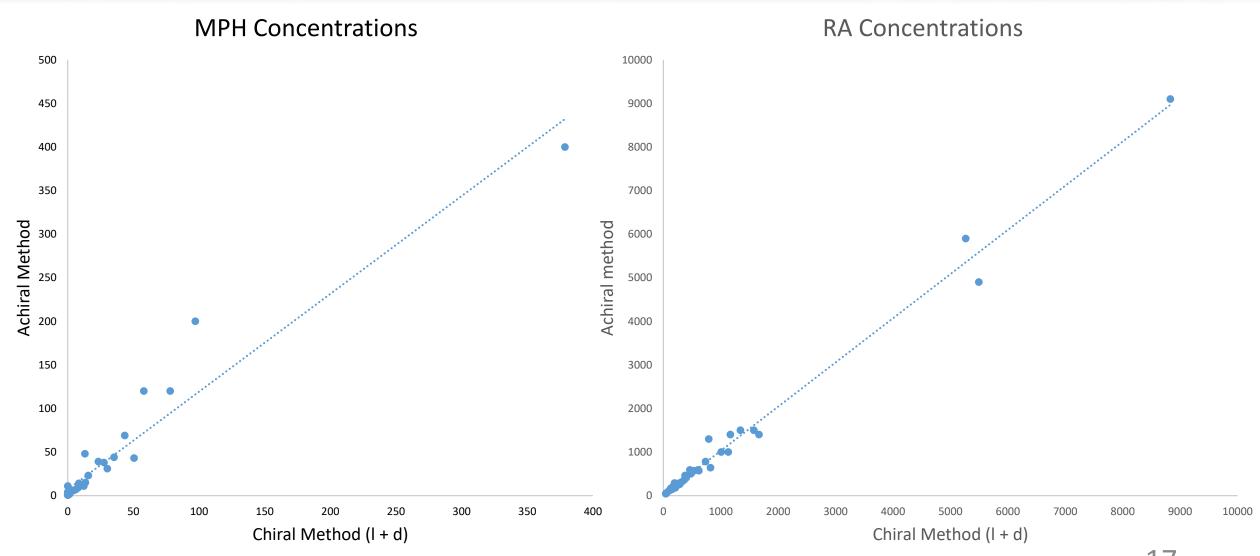
	Linear Range (R ² >0.99)	ME	Bias	Precision (Within Run)	Precision (Between Run)
L-RA	10-1000	-25	-6.8	12.0	9.8
D-RA	10-1000	-27	-4.7	12.5	11.6
L-MPH	0.25-250	-11	-3.7	14.1	10.9
D-MPH	0.25-250	-7.6	-1.8	13.2	10.4
L-EPH	0.25-250	-7.6	-7.4	15.2	11.4
D-EPH	0.25-250	-5.6	-8.6	15.4	12.1

Case samples

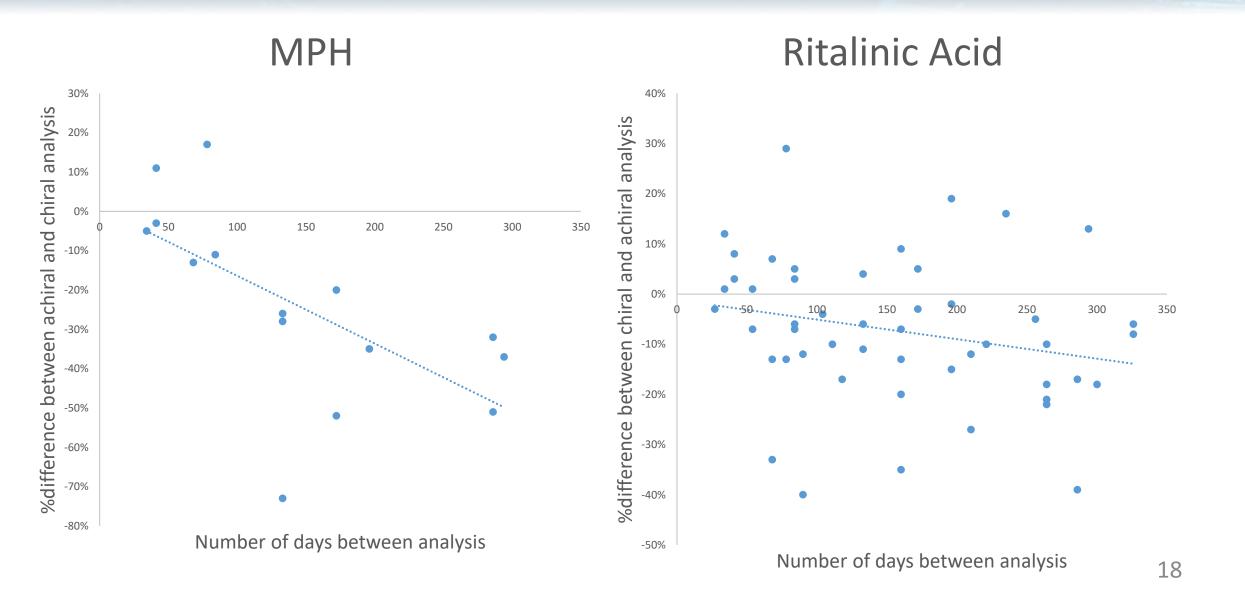
- 49 authentic post-mortem samples identified with presence of MPH, EPH and RA by an achiral method
 - Re-analyzed by this SFC chiral method to quantify the enantiomers
- Comparison of the total concentration values (achiral method) to the I/d enantiomer concentration values (chiral method)

Analysis of post-mortem samples (n=49)

Achiral method


Chiral method

	Analyte	Positive Cases	Mean (Range) Concentration (ng/mL)	An	
	RA	49	805 (29-5900)	Į-	
		73	003 (23 3300)	d.	
	NADII	27	25 (0.6.400)	I-N	
	MPH	WIPH	37	35 (0.6-400)	d-I
		_	2 (2 5 42)	1-1	
	ЕРН		3 (0.5-10)	d-	


Analyte	Positive Cases	Mean (Range) Concentration (ng/mL)
I-RA	49	343 (<loq-3419)< th=""></loq-3419)<>
d-RA	49	436 (17–5410)
I-MPH	15	6 (<loq-20.5)< th=""></loq-20.5)<>
d-MPH	30	28.5 (<loq-79.4)< th=""></loq-79.4)<>
I-EPH	5	2.5 (0.62–8.2)
d-EPH	1	<loq< th=""></loq<>

- Results were comparable for RA (7.3%) to that of validated LC-MS method but time and concentration played a factor in instability of MPH (55%) and EPH (36%)
- Stability studies suggest MPH breakdown to RA at a faster rate
 - RA could also be more abundant due to abuse

Analysis of post-mortem samples

Stability of samples

Analysis of post-mortem samples

Analyte	Number of cases	<i>l/d</i> ratio Mean (Range)	
I-RA	49	0.68 (0.07-1.84)	
d-RA	43	0.08 (0.07-1.84)	
I-MPH	15	0.14 (<loq-0.38)< th=""></loq-0.38)<>	
d-MPH	15		
I-EPH	1	<loq< th=""></loq<>	
d-EPH	T		

- MPH is usually taken as a racemic mixture
- I/d ratio for RA and MPH
 - d configuration is more abundant
- Time of intake may play a factor in the difference of l/d ratios

Conclusion

- A SFC-MS method was developed and validated for the chiral separation of threo-MPH, EPH and RA
- This method was applied to 49 postmortem samples
 - These values were compared to an achiral method utilizing LC-MS
- The SFC-MS method gave insight into metabolism and stability issues of these compounds

Thank you!

crs040@shsu.edu

